turkeypoint


Florida’s Nuclear Plants and Hurricane Irma

, senior scientist

Will Florida’s two nuclear plants, Turkey Point and St. Lucie, be able to withstand Hurricane Irma?

Florida governor Rick Scott, the utility Florida Power & Light (FP&L), and the US Nuclear Regulatory Commission (NRC) have all provided assurances that they will. But we are about to witness a giant experiment in the effectiveness of the NRC’s strategy for protecting nuclear plants from natural disasters. Read more >

Bookmark and Share

Turkey Point: Fire and Explosion at the Nuclear Plant

, director, Nuclear Safety Project

The Florida Power & Light Company’s Turkey Point Nuclear Generating Station about 20 miles south of Miami has two Westinghouse pressurized water reactors that began operating in the early 1970s. Built next to two fossil-fired generating units, Units 3 and 4 each add about 875 megawatts of nuclear-generated electricity to the power grid.

Both reactors hummed along at full power on the morning of Saturday, March 18, 2017, when problems arose. Read more >

Bookmark and Share

Spent Fuel Damage: Pool Criticality Accident

, director, Nuclear Safety Project

Disaster by Design/Safety by Intent #29

Disaster by Design

Disaster by Design/Safety by Intent #26 described a progression leading to overheating and damage to a reactor core, often labeled a meltdown. Disaster by Design/Safety by Intent #27 described the damage to a reactor core that can result from reactivity excursions. Disaster by Design/Safety by Intent #28 and #29 mirror those commentaries by describing how irradiated fuel stored in spent fuel pools can experience damage from overheating and reactivity excursions. Read more >

Bookmark and Share

When Safety Relief Valves Fail to Provide Safety or Relief at Nuclear Plants

, director, Nuclear Safety Project

Disaster by Design: Safety by Intent #6

Disaster by Design

The light water reactors currently operating in the U.S. are either boiling water reactors (BWRs) or pressurized water reactors (PWRs). In both designs, water flowing past the nuclear fuel in the reactor cores gets heated to over 500°F. Water is able to be heated to this temperature because it is pressurized—to over 1,000 pounds per square inch (psi) in BWRs and to over 2,000 psi in PWRs. The 1,000 psi pressure is equivalent to the pressure submerged more than 2,200 feet below the ocean’s surface. Read more >

Bookmark and Share

Nuclear Power(less) Plants

, director, Nuclear Safety Project

Disaster by Design/Safety by Intent #3

Disaster by Design

The primary purpose of commercial nuclear power plants in the U.S. is to generate electricity. When not fulfilling that role, nuclear power plants that are shut down require electricity to run the equipment needed to prevent the irradiated fuel in the reactor core and spent fuel pool from damage by overheating. The March 2011 accident at Fukushima Daiichi in Japan graphically illustrated what can happen when nuclear plants do not get the electricity they require. Read more >

Bookmark and Share