Nuclear Power Safety

The probability of a nuclear accident is small but the consequences can be catastrophic. Our experts analyze nuclear safety issues from the past and present, making recommendations for a safer nuclear fleet.


Subscribe to our Nuclear Power Safety feed

Latest Nuclear Power Safety Posts

Role of Regulation in Nuclear Plant Safety: A New Series of Posts

, director, Nuclear Safety Project

President Trump seeks to lessen the economic burden from excessive regulation. The Nuclear Regulatory Commission (NRC) initiated Project AIM before the 2016 elections seeking to right-size the agency and position it to become more adaptive to shifting needs in the future. And the nuclear industry launched its Delivering the Nuclear Promise campaign seeking productivity and efficiency gains to enable nuclear power to compete better against natural gas and other sources of electricity.

In light of these concurrent efforts, we will be reviewing momentous events in nuclear history and posting a series of commentaries on the role of regulation in nuclear plant safety. The objective is to better understand under-regulation and over-regulation to better define “Goldilocks” regulation—regulation that is neither too lax nor too onerous, but just right. That better understanding will enable us to engage the NRC more effectively as the agency pursues Project AIM and the industry tries to deliver on its promise. Read more >

Bookmark and Share

High Energy Arc Faults and the Nuclear Plant Fire Protection IOU

, director, Nuclear Safety Project

Last year, we posted a commentary and an update about a high energy arc fault (HEAF) event that occurred at the Turkey Point nuclear plant in Florida. The update included color photographs obtained from the Nuclear Regulatory Commission (NRC) via a Freedom of Information Act request showing the damage wrought by the explosion and ensuing fire. Neither the HEAF event or its extensive damage surprised the NRC—they had been researching this fire hazard for several years. While the NRC has long known about this fire hazard, its resolution remains unknown. Meanwhile, Americans are protected from this hazard by an IOU. The sooner this IOU is closed out, the better that Americans in jeopardy will be really and truly protected. Read more >

Bookmark and Share

Made in Chattanooga

, director, Nuclear Safety Project

What do the Arkansas Nuclear One Unit 2, Beaver Valley Unit 1, Beaver Valley Unit 2, Big Rock Point, Callaway, Calvert Cliffs Unit 1, Calvert Cliffs Unit 2, Catawba Unit 2, Comanche Peak Unit 1, Comanche Peak Unit 2, Connecticut Yankee, Cooper, Diablo Canyon Unit 1, Diablo Canyon Unit 2, Donald C. Cook Unit 1, Edwin I. Hatch Unit 1, Edwin I. Hatch Unit 2, Fort Calhoun, HB Robinson, Indian Point Unit 1, Indian Point Unit 2, Indian Point Unit 3, James A. FitzPatrick, Joseph M. Farley Unit 1, Joseph M. Farley Unit 2, Fermi Unit 2, Kewaunee, LaSalle Unit 1, Maine Yankee, Marble Hill, McGuire Unit 1, Millstone Unit 1, Millstone Unit 2, Millstone Unit 3, Nine Mile Point Unit 1, Oyster Creek, Palisades, Palo Verde Unit 1, Palo Verde Unit 2, Palo Verde Unit 3, Pilgrim, Point Beach Unit 2, Salem Unit 1, Salem Unit 2, San Onofre Unit 1, San Onofre Unit 2, San Onofre Unit 3, Seabrook, South Texas Project Unit 1, South Texas Project Unit 2, St. Lucie Unit 1, St. Lucie Unit 2, Vogtle Unit 1, Vogtle Unit 2, Waterford, and Wolf Creek nuclear power reactors have in common? Read more >

Bookmark and Share

NRC Cherry-Picking in the Post-Fukushima Era: A Case Study

Mark Leyse, , UCS

In the late 1960s, the Atomic Energy Commission (AEC), the forerunner of the NRC, paid the very companies that designed nuclear reactors—Westinghouse and General Electric (GE)—to test the efficacy of their own emergency cooling systems. Read More

Bookmark and Share

The “Race” to Resolve the Boiling Water Reactor Safety Limit Problem

, director, Nuclear Safety Project

General Electric (GE) informed the Nuclear Regulatory Commission (NRC) in March 2005 that its computer analyses of a depressurization event for boiling water reactors (BWRs) non-conservatively assumed the transient would be terminated by the automatic trips of the main turbine and reactor on high water level in the reactor vessel. GE’s updated computer studies revealed that one of four BWR safety limits could be violated before another automatic response terminated the event.

Over the ensuring decade-plus, owners of 28 of the 34 BWRs operating in the US applied for and received the NRC’s permission to fix the problem. But it’s not clear why the NRC allowed this known safety problem, which could allow nuclear fuel to become damaged, to linger for so long or why the other six BWRs have yet to resolve the problem. UCS has asked the NRC’s Inspector General to look into why and how the NRC tolerated this safety problem affecting so many reactors for so long. Read more >

Bookmark and Share